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We propose a simple model for mass transport within a fungal hypha and its subsequent growth. Inspired by
the role of microtubule-transported vesicles, we embody the internal dynamics of mass inside a hypha with
mutually excluding particles progressing stochastically along a growing one-dimensional lattice. The connec-
tion between long-range transport of materials for growth and the resulting extension of the hyphal tip has not
previously been addressed in the modeling literature to our knowledge. We derive and analyze mean-field
equations for the model and present a phase diagram of its steady-state behavior, which we compare to
simulations. We discuss our results in the context of the filamentous fungus Neurospora crassa.
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Biologically, fungi are distinct from both plants and ani-
mals. In addition to their intrinsic interest, they impact im-
mensely on human affairs and on the ecosystem �1�.

Key to the evolutionary success of fungi is their unique
mode of growth. Filamentous fungi grow by the polarized
extension of threadlike hyphae, which make up the body, or
mycelium, of a fungus. Except for branching �which initiates
new hyphae� the site of growth is localized to a single region
at the tip of each elongating hypha.

There are many theoretical models for the growth of fun-
gal colonies and of single hyphae �reviewed in �2,3��. Most
models of single hypha growth concentrate on biomechanics
�4,5�. Of more interest for us here is the “vesicle supply
center” �VSC� model �6,7�, in which raw materials for
growth are packaged in secretory vesicles and distributed to
the hyphal surface from a single supply center �often identi-
fied with an organelle complex known as the Spitzenkörper,
or apical body �8,9�� situated within the growing tip. This
model is capable of predicting the shape of hyphal tips; but
the speed of growth �equivalent to the speed of the VSC� is
an input parameter. Moreover, all transport processes are
subsumed into a single rate of vesicle supply at the VSC. We
are aware of just one model that takes explicit account of
transport along the growing hypha �10�. A major interest of
this early work, however, was the initiation of branching;
these authors did not relate vesicle transport to growth ve-
locity. This latter issue remains poorly understood.

In this work, we propose a simple one-dimensional model
which makes an explicit connection between the long-
distance transport of building materials along a hypha and
the resulting extension as they are delivered to its apical site
of growth.

It is a highly idealized model, encompassing many com-
plicated biological processes �many of which are still poorly
understood� with two key parameters: the rate at which
vesicles enter the system and the efficiency with which they
extend the length of the hypha. We demonstrate that, by al-
tering these rates, steady states can be attained whereby the
hypha is extending at a constant speed while being supplied
with materials far behind the tip. Our model has features in
common with �10�. As in �10�, we use computer simulations,
however in addition to this we can also make analytical

progress because of recent advances in nonequilibrium sta-
tistical physics.

Our model is inspired by the well-known totally asym-
metric simple exclusion process �TASEP�. This is a one-
dimensional lattice along which particles progress through
stochastic directed motion. No more than one particle may
occupy each lattice site at any given time. The TASEP was
originally introduced as a lattice model of ribosome motion
along mRNA �11� and recent variants have been widely used
to model the collective dynamics of molecular motors
�12–15�. The application of this and other classes of statisti-
cal mechanical models to many kinds of “biological traffic”
has recently been reviewed �16�. The TASEP is also widely
studied in its own right as a fundamental model of nonequi-
librium statistical mechanics �17�, in particular as a simple
driven diffusive system exhibiting nonequilibrium phase
transitions �18� between different macroscopic density and
current regimes �19,20�. Our work contributes to the study of
both biological traffic and nonequilibrium phase transitions.

In constructing the model, we introduce an additional fea-
ture into the TASEP: particles reaching the end of the lattice
act to extend it. We ask whether a constant input rate far
from the growing end of the lattice can generate steady-state
lattice growth and, if so, how the growth velocity depends
upon the system parameters. We find that, as in the TASEP,
different macroscopic regimes exist in the growing system,
with different forms for the growth velocity, and nonequilib-
rium phase transitions between these regimes. We ask
whether these steady states may be related to the growth
states observed in fungal hyphae.

To arrive at the model we appeal to the popular belief that
the long-distance transport mechanism within a hypha is pro-
vided by kinesin molecular motors, “walking” along micro-
tubule filaments which run lengthways through the hypha
�22�. Once at the tip, vesicles fuse with the plasma mem-
brane, resulting in a localized extension of the hyphal wall
�8,9,21�. Figure 1 summarizes this process diagrammatically.

A kinesin motor with cargo progressing toward the tip
will likely attach to and detach from a number of microtu-
bules on its way, and is then thought to be transferred onto
actin filaments at the VSC, before being distributed to the
hyphal tip �8�. In our simple model however, we shall bypass
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the details of the vesicle trajectory and concentrate instead
on a coarse-grained description representing what is essen-
tially a continuous directed movement of vesicles toward the
hyphal tip. We thus assume here simply that a continuous
driving force is applied to the vesicles, all the way to the
point of fusion.

We construct the model by supposing that a hypha con-
tains a number of effective microtubule tracks which run con-
tinuously to the tip. Each effective microtubule is modeled
by a one-dimensional �1D� lattice, with the motors plus cargo
represented by particles that progress along the lattice sites.
We identify lattice site 1 with the hyphal tip. Particles obey
hard-core exclusion and move in one direction only, toward
the tip, without overtaking. When particles leave lattice site
1, they may act to extend the lattice through the transforma-
tion particle→new site.

We justify our model with a simple order of magnitude
test. We identify the lattice repeat with the kinesin step size,
8 nm �23�. In the model organism Neurospora crassa, a
10-�m-wide hypha growing at 25 °C has as extension rate
of �0.5 �m per second. It has been estimated that �600
vesicles per second must fuse with the tip to provide enough
plasma membrane and other materials to maintain this hy-
phal extension rate �24�. Thus, the extension of a hypha by
one model lattice unit ��10 nm� is equivalent to the arrival
of order ten vesicles. If each particle delivered to the end
contributes to lattice extension, we require � ten equivalent
effective microtubules in a typical hyphal cross section. This
is acceptably within an order of magnitude of the number of
microtubules observed near the Spitzenkörper within the
growing hyphal tip of N. crassa �25�.

The model dynamics are specified by the rates at which
the following processes occur on the lattice: particles in the
bulk hop toward the tip with rate 1; particles enter the lattice
far from the tip with rate �; particles detach from site 1 with
rate � and transform into a new lattice site with rate �, as
shown schematically in Fig. 2. Thus � is the parameter con-
trolling the lattice growth and � allows particles to leave the
end of the lattice without extending it. The ratio � /� is thus
the efficiency with which the hypha extends. Biologically, �

represents the rate at which secretory vesicles fuse with the
hyphal tip, � represents the vesicle density far from the tip,
and � allows vesicles to reach the tip without contributing
directly to growth.

We initially perform Monte Carlo �MC� model simula-
tions by stochastically updating particles on a single lattice
according to the above dynamics. After some relaxation
time, density profiles are obtained by averaging site occupan-
cies over many updates. We find three different macroscopic
behaviors. Results for representative parameter values �
=0.25, �=0, and � in the range 0.2–0.56, are shown in Fig.
3. For high values of � one sees profiles that decay from the
tip to a �-independent bulk density equal to �. For the high-
est values of � the density at the tip is less than �. As � is
lowered the tip density is greater than � and the region over
which the decay occurs grows in size. For low values of �
we see distinct profiles where the bulk density is � dependent
and is �0.4 �these profiles were also seen for low �, high ��.
The transition from the high-� to the low-� profiles is dis-
continuous and involves a jump in the bulk density. In the
regime of high � and � �not shown�, density profiles with
algebraic decays between the boundaries were observed.
These are “maximal current” profiles, which we shall discuss
shortly.

We now seek an analytical understanding of our observa-
tions using a mean-field approximation where we consider
the average density �i�t� at site i, and ignore correlations
between the densities at different sites �19�. We describe the
growth dynamics in a frame of reference comoving with the
growing tip. The tip site is always labeled site 1. Each time
growth occurs, all other site labels must therefore be updated
i→ i+1. The change in density at site i is the net result of
particles entering from the site on the right, departing to the
site on the left, and shifting right due to index relabeling

FIG. 1. Simplified diagram of the process of polarized secretion
resulting in tip growth in a fungal hypha. Secretory vesicles are
transported by kinesin molecular motors �not to scale� along micro-
tubules toward their growing “plus” ends. The vesicles accumulate
within the so-called Spitzenkörper at the hyphal tip before fusing
with the apical plasma membrane. The secretory vesicles deliver
membrane proteins and lipids, cell wall synthesizing enzymes, and
possibly cell wall precursors to the growing fungal tip. Hyphal
widths typically vary between 5 and 15 �m.

FIG. 2. Schematic of the model with input rate �, hopping rate
p=1, absorption rate �, and growth rate �.

FIG. 3. Average site occupancy for �=0.25. Upper two traces
are for �=0.2 �higher� and 0.24 �lower�. Lower five traces �highest
to lowest� for �=0.28–0.56 display apical peaks and decays.
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during growth. Within the mean-field approximation, we
have, for i	2,

d�i

dt
= �i+1�1 − �i� − �i�1 − �i−1� + ��1��i−1 − �i� . �1�

Note that the third term is proportional to the rate at
which lattice sites are added, ��1=v, which is the tip veloc-
ity. Separate equations govern the change in density at sites 1
and 2, in order to take into account the effect of the
particle→new site transition:

d�1

dt
= �2�1 − �1� − �� + ���1, �2�

d�2

dt
= �3�1 − �2� − �2�1 − �1� − ��1�2. �3�

Equation �3� differs from the bulk equation only in that,
should a growth event occur, there is never a particle at site
2 after the lattice indices are updated. The final term is hence
a decrease in density at site 2.

Finally, since particles enter at rate �, the particle density
at the right-hand end is effectively �. As the lattice grows,
this boundary recedes from the tip with velocity −v, ulti-
mately corresponding to the boundary condition

lim
N→


�N = � . �4�

We seek a steady-state solution for this system defined in
the reference frame of the tip. Such a solution is character-
ized by a constant current of particles everywhere through
the system, a uniform tip velocity, and a density profile that
decays to the right boundary condition over a finite length
scale, so that the profile is effectively independent of the
system size, i.e., we seek solutions to �1�–�3� with the time
derivatives set to zero and obeying the boundary condition
�4�. We obtain an expression for the particle current through
the system in the tip’s stationary frame from Eq. �1�:

J = �i�1 − �i−1� − v�i−1. �5�

Now, at the tip J= ��+���1= �1+� /��v, whereas far away
from the tip �5� yields J=��1−�−v�, so that

v =
��1 − ��

1 + � + �/�
, �6�

which gives the tip velocity in terms of � and � /�.
We now restrict ourselves to �=0, and comment on the

effects of nonzero � later. Since for �=0 the tip velocity is
simply a result of a flux of particles through the final lattice
site, we have J=v and thus from �5� a recurrence relation
between the steady-state density at any site and that at the
previous site:

�i =
v�1 + �i−1�

1 − �i−1
, i 	 2. �7�

We define �
=� as the stable fixed point value to which this
recurrence relation converges:

�
 = � =
1 − v − �1 − 6v + v2

2
. �8�

The decay length to � is finite and independent of lattice
size, as required. We are now able to solve for all densities in
terms of the parameters, � and �,

�1 =
v
�

=
��1 − ��
�� + �

, �9�

�2 =
v

1 − �1
=

���1 − ��
��� + 1� − ��1 − ��

, �10�

and for i	2, �i is given through �7�.
Under our constraint that the bulk density is �, we find

two types of steady-state solution to the mean-field equa-
tions. In these solutions the profiles decay exponentially to-
ward �=� and are distinguished by whether � decays to �
from above or below. For �	 �1−�� /2, which we refer to as
region I, the decay is from above, and for �� �1−�� /2,
which we refer to as region II, the decay is from below, from
a minimum value at site 2, although there is a peak in the
density at site 1.

These steady-state solutions only exist in certain param-
eter regimes. For ��� / �1+��, instead of iterating to the
fixed point �8�, the density is fixed for i	1 at �i=1−2�,
with �1=v /� and v=��1−2�� / �1−��. The interpretation is
that the rate of release of particles at the growing end is no
longer large enough to control the input rate. Thus the par-
ticle density reaches a maximum value that extends from
near the tip throughout the whole lattice and the boundary
condition �4� is not satisfied. This is not a steady-state solu-
tion for our model in the sense we have defined and we
describe this region as a “jammed” phase. At the transition to
the jammed phase the bulk density jumps discontinuously
from �=�=� / �1−�� to �=1−2�.

We see from �8� that the maximum value of � is �c=�2
−1, which is obtained when v=3−2�2. For �	�c, Eq. �1�
no longer has real fixed points, and again we do not satisfy
the boundary condition �4�. We may understand the region
bounded by �	�2−1 and �	� / �1+�� as a maximal cur-
rent phase, where the particles have reached a maximum
flow rate through the system which is no longer limited by
the input and growth rates. In this case, the density profile
decays algebraically from the boundary sites 1 and N to a
bulk density �=�2−1 and does not constitute a steady state
in our sense since the densities evolve as the system grows.

We summarize the results of this mean-field theory with a
phase diagram in Fig. 4. Regions I and II correspond to the
MC profiles observed for high � �Fig. 3 and the jammed
region corresponds to the profiles observed for low �. Simu-
lations carried out over the whole parameter space revealed
that the qualitative behavior of the mean-field theory is cor-
rect; however, the transitions between different profile types
do not occur exactly at the predicted mean-field boundaries.
In order to compare in more detail the mean-field and MC
results we plot in Fig. 5 mean-field and simulation profiles in
region I. The decay length at the tip is significantly higher in
the simulation, by a factor of about 10. The differences be-
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tween the mean-field theory presented here and simulations
can be attributed to density fluctuations and correlations in
the system which are ignored in the mean-field theory. In
particular, the occupations of sites 1 and 2 are strongly cor-
related since a growth event vacates both of these sites si-
multaneously. An improved mean-field theory which takes
into account the correlation between sites 1 and 2 predicts a
phase diagram with essentially the same phases, but some
modified phase boundaries �28�.

Simulation and mean-field results for nonzero � �Fig. 5�,
show that � does not affect the qualitative profile shape. A
detailed analysis of the phase structure with ��0 will be
given elsewhere �28�.

We take particular interest in the steady-state phase with a
positive density gradient at the tip, and speculate whether the
emergence of this high-density region may be associated
with the vesicle accumulation within the Spitzenkorper in the
hyphal tip region of a real fungus. For representative param-
eter values �=0.25 and �=0.24, MC simulations predict a
high-density region of �240 nm, correlating �within an or-

der of magnitude� with the length scale of the Spitzenkorper
in N. crassa of �2 �m �8,27�.

Note that, in contrast to the vesicle supply center model
�6,7�, a growth velocity arises naturally for our model. At
least within mean-field theory, this velocity is determined in
a simple way by the rate � at which material is fed into the
system far away from the tip and the ratio � /� representing
the efficiency with which the cargos fuse with the tip. It
would be of interest to test this prediction experimentally, for
example by live-cell imaging the dynamics of motor proteins
or cargo fused with green flourescent protein �26�. In this
way the rate of delivery of motor proteins �or cargo� to the
hyphal tip could be analyzed in relation to the rate of hyphal
extension �which can be controlled, for example, by chang-
ing the temperature of incubation�. Finally we mention that
the phase diagram Fig. 4 is related to that of the open bound-
ary TASEP �20�; we explore this correspondence in a future
publication �28�.
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